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RANGE-BASED EGARCH OPTION PRICING MODELS1 

Introduction 

The research in this paper is focused on the innovative range-based volatility 

models introduced in Alizadeh, Brandt, and Diebold (2002) (hereafter ABD).  We 

develop new option pricing models using multi-factor diffusion approximations 

couched within this theoretical framework and examine their properties in 

comparison with the traditional Black-Scholes model. 

We assume that the log stock price s follows a drift-less Brownian motion 

. The volatility of daily log returns, denoted h, is assumed 

constant within each day, at ht from the beginning to the end of day t, but is 

allowed to change from one day to the next, from ht at the end of day t to ht+1 

at the beginning of day t+1.  Under these assumptions, ABD show that the log 

range, defined as: 
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is to a very good approximation distributed as  

 229.0,ln43.0~ tt hND   (4.2) 

where N[m; v] denotes a Gaussian distribution with mean m and variance v. The 

above equation demonstrates that the log range is a noisy linear proxy of log 

volatility ln ht.  By contrast, according to the results of Alizadeh, Brandt,and 

                                                 
1 The author wishes to acknowledge the contribution to the research in this chapter due to the many helpful 

comments and suggestions from Professor Stephen Taylor of the University of Lancaster.   
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Diebold (2002), the log absolute return has a mean of 0.64 + ln ht and a variance 

of 1.11. However, the distribution of the log absolute return is far from Gaussian.  

The fact that both the log range and the log absolute return are linear log 

volatility proxies (with the same loading of one), but that the standard deviation 

of the log range is about one-quarter of the standard deviation of the log absolute 

return, makes clear that the range is a much more informative volatility proxy. It 

also makes sense of the finding of Andersen and Bollerslev (1998) that the daily 

range has approximately the same informational content as sampling intra-daily 

returns every four hours. 

It is well known that the range suffers from a discretization bias because the 

highest (lowest) stock price observed at discrete points in time is likely to be 

lower (higher) than the true maximum (minimum) of the underlying diffusion 

process. It follows that the observed range is a downward-biased estimate of the 

true range (which in turn is a noisy proxy of volatility).  Rogers and Satchell 

(1991) devise a correction of the observed range that virtually eliminates this bias.  

However in many cases the discretization bias is not likely to be a problem where 

the underlying asset is very liquid and the time that elapses between trades 

(recorded prices) is negligible.  

Except for the model of Chou (2001), GARCH-type volatility models rely on 

squared or absolute returns (which have the same information content) to capture 

variation in the conditional volatility ht. Since the range is a more informative 

volatility proxy, it makes sense to consider range-based GARCH models, in 

which the range is used in place of squared or absolute returns to capture 

variation in the conditional volatility. This is particularly true for the EGARCH 

framework of Nelson (1990), which describes the dynamics of log volatility (of 

which the log range is a linear proxy). 
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ABD consider variants of the EGARCH framework introduced by Nelson 

(1990). In general, an EGARCH(1,1) model performs comparably to the 

GARCH(1,1) model of Bollerslev (1987).  However, for stock indices the in-

sample evidence reported by Hentschel (1995) and the forecasting performance 

presented by Pagan and Schwert (1990) show a slight superiority of the 

EGARCH specification. One reason for this superiority is that EGARCH models 

can accommodate asymmetric volatility (often called the “leverage effect,” which 

refers to one of the explanations of asymmetric volatility), where increases in 

volatility are associated more often with large negative returns than with equally 

large positive returns. 

The one-factor range-based model (REGARCH 1)  takes the form: 

11111 /)ln(lnln   tth

D

ththtt hRXhkhh   (4.3) 

where the returns process Rt is conditionally Gaussian: Rt ~ N[0, ht
2] 

and the process innovation is defined as the standardized deviation of the log 

range from its expected value: 

29.0/)ln43.0( 111   tt

D

t hDX  (4.4) 

Following Engle and Lee (1999), ABD also consider multi-factor volatility 

models.  In particular, for a two-factor range-based EGARCH model 

(REGARCH2), the conditional volatility dynamics) are as follows: 

111111 /)ln(lnlnln   tth

D

thtthtt hRXhqkhh   (4.5) 
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D
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where ln qt can be interpreted as a slowly-moving stochastic mean around which 

log volatility  ln ht makes large but transient deviations (with a process determined 

by the parameters h, h and h).  

The parameters , q, q and q determine the long-run mean, sensitivity of the 

long run mean to lagged absolute returns, and the asymmetry of absolute return 

sensitivity respectively. 

The intuition is that when the lagged absolute return is large (small) relative to the 

lagged level of volatility, volatility is likely to have experienced a positive 

(negative) innovation. Unfortunately, as we explained above, the absolute return 

is a rather noisy proxy of volatility, suggesting that a substantial part of the 

volatility variation in GARCH-type models is driven by proxy noise as opposed to 

true information about volatility. In other words, the noise in the volatility proxy 

introduces noise in the implied volatility process. In a volatility forecasting 

context, this noise in the implied volatility process deteriorates the quality of the 

forecasts through less precise parameter estimates and, more importantly, 

through less precise estimates of the current level of volatility to which the 

forecasts are anchored. 

The REGARCH Framework 

Discrete-time ARCH models can be approximated by diffusions (and vice versa) 

by following methods in “ARCH models as diffusion approximations” by Daniel 

Nelson, 1990, J Econometrics 45, 7-38. The basic idea is that the means and 

variances of the processes can be matched.2  

                                                 
2 Nelson’s 1990 paper is demanding mathematics. Some of the same ideas appear in the authoritative survey paper : “ARCH 

models” by T. Bollerslev, R.F. Engle and D.B. Nelson, 1994, in : Handbook of Econometrics, volume IV (North-

Holland, Amsterdam), 2959-3038. 
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The 2-factor range model defines conditional standard deviations (not variances) 

for one-day returns and hence these quantities are not annualized. 

Let t measure time in years. Also suppose data is collected once every s years, so 

for daily data s = 1/252 approximately.   

The discrete-time model is then: 

),1,0(~     ,
)1()1(

NZZhR tttt   

,))ln()(ln()ln()ln( stststhstt hqhh     (4.7) 

,))ln(()ln()ln( ststqstt qqq     (4.8) 

with residuals 

,tth
D
tht hRX    (4.9) 

ttq
D
tqt hRX   . (4.10) 

The latter are i.i.d. residuals, that are shocks to ln(h) and ln(q). The variances of 

these residuals depend on the parameters that define them. In the following 

equations, the residuals are scaled to make them products of their standard 

deviations and standardized residuals. Also, the volatility terms are annualized – 

this is helpful for comparisons with familiar diffusions, but it is also necessary to 

obtain terms on the same scale so that limits can be considered. 

Now substitute 
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*
tt hsh   and *

tt qsq  , (4.11) 

so the starred variables are annualized standard deviations. Also let  

)2(
tht Zs   and 
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tqt Zs   (4.12) 

 with all variables Z standardized, i.e. mean zero and variance one. Then 
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We can also add the equation 

.)ln()ln(
)1(*

ttstt ZshPP    (4.15) 

The three equations then define a model M(s) for shocks defined once every s 

years.  

Nelson‟s paper focuses on the limit of a family of models M(u) as u decreases 

towards zero. To obtain M(u) we retain the “drift rates” in M(s), thus : 

    ,)ln()ln(
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There are similarities here with equation (3.23) of Nelson (1990). 

Every Zu term corresponds to a term dW in the diffusions, since the variances 

of Zu and )()( utWtW   both equal u. The first Z has time subscript t, the 

second and third Z have subscripts t-u. The distinction does not matter as u 

approaches zero. 

In the diffusion approximation that follows it might be more correct to replace 

PdP /  by )(ln Pd . However, we have started by assuming zero mean return 

which is a simplification anyway and furthermore any option pricing will require 

the introduction of the risk-free rate into the first equation below if the equations 

are used in the context of a risk-neutral measure. 

The diffusion approximation then involves prices, two annualized volatility 

components and three Wiener processes: 

  , )1()1( dWPdtDrPdP   (4.19) 

,))ln()(ln()(ln( )2()1()2()1( dWdt
s

d h
h 
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   (4.20) 
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
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Here )1(  and )2(  have replaced *h  and 
*q , and u has been replaced by dt.  

We next have to specify the correlations between the Wiener processes.  As we 
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match the covariances of the shocks in the discrete and continuous processes, it 

is enough to match the correlations of the 3 shocks Z with those of the 3 

differentials dW. 

There is zero correlation between 
)1(

tZ  and the range variable D
tX , when these 

variables are the result of observing a continuous process. Intuitively the 

correlation is zero because replacing dW by dW switches the sign of Z but 

leaves the range the same. This means 
)1(

tZ
D
tX  has the same expectation as 

)1(
tZ

D
tX , hence the expectation and correlation are both zero.  

Further simplifications occur on the next section because each Z has unit 

variance. 

The correlation matrix of the Wiener differentials is the same as that of the terms.

)(i
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Likewise, 
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These expressions are used to derive the correlation matrix between three Wiener 

processes.  This matrix is then decomposed using the Cholesky factorization 

method described earlier to enable correlated Normal variates to be generated. 

The scale terms are given by 

)(
1 222

hhh
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qqq
s

   (4.27) 

providing we are willing to assume that the terms D
tX 1  and 11  tt hR  have 

unit variance, as supposed by the theory. The assumption, particularly for D
tX 1 , 

can be checked from the time series values given by an estimated REGARCH 

model. 

It transpires that the correlation matrix is singular: 

|M| =        =  0   (4.28) 

 This means, in effect, that there are only two random factors in the model. 

However, there are still three state variables required to specify the state of the 

world (one price and two volatilities).  

The explanation is as follows: 

In GARCH and Nelson's exponential ARCH, there is one random shock per unit 

time, which determines the surprise in both the asset price and its volatility. In the 
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diffusion limit, for exponential ARCH, there are two terms dW() and they are not 

singular. 

 For REGARCH with one factor, there are two shocks per unit time (essentially 

the return and the range) that determine the surprises in the asset price and its 

volatility. 

 But, for REGARCH with two factors there are still only two shocks per unit 

time. This means the three terms Z() are determined by the return and the range.  

Hence any two Z() give the third one and, indeed, the relationships among the 

Z() are linear (which makes them singular). 

 The singularity is therefore a consequence of REGARCH (with two factors) 

using linear combinations of two shocks to provide the surprises in three 

equations (one for price and two for the volatility components). 

The REGARCH Option Pricing Model 

Derivation of Stochastic Differential Equations 

The underlying model is of discrete-time REGARCH type.  The processes for 

price and volatilities can be written as: 
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 (4.29) 

In this we have used  to represent the total real rate, including dividends. The 

)1(dX and )2(dX are uncorrelated. The coefficients of )1(dX and )2(dX are the 

„volatility coefficients‟ referred to in the spreadsheet.  
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(The later Appendix 3 of this chapter on Theoretical Concepts contains the 

original specification of the discrete-time REGARCH model and its conversion 

to continuous-time stochastic differential equations. It can easily be confirmed 

that the above system of equations has exactly the same correlation behavior as 

the system described later.) 

 

This shows that there are only two random factors in the model. However, there 

are still three state variables required to specify the state of the world (one price 

and two volatilities).  

The main benefit of recasting the discrete-time REGARCH model in continuous 

time is that it gives us a solid foundation on which to build up an option-pricing 

model and its associated hedging strategy. Without that foundation we cannot say 

for certain that the option model is correct, can be used for hedging or can be 

used for pricing of American options, for example. (This is true even though 

inevitably a return to a discrete-time model will be necessary for the final number-

crunching stage.) 

The above stochastic differential equations represent the real variables, the stock 

price and two volatilities. For the pricing of options we must work in the risk-

neutral world.  

Since neither of the volatilities is a traded quantity we can expect that the real 

drifts of both equations will be modified by the market prices of risk associated 

with the two sources of randomness. 

The market price of stock risk is well known to be the quantity  
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)1(

 r
. 

It is effectively the Sharpe ratio. Note how it is an expression involving the real 

drift of the asset and its volatility. This is still valid even when that volatility is 

varying or is itself stochastic. Since the underlying stock is a traded quantity this market 

price of risk can be expressed in terms of other quantities already in the model. 

 

The adjustment to the volatility processes for the market price of stock risk is via 

the subtraction of a term which is simply the product of the market price of stock 

risk and the relevant volatility of volatility factor. 

For the )1( process we must subtract  

s

r h

)1(

)(



 
 

and for the )2( process we must subtract  
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r q
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This deals with the market price of stock price risk. 

Since the second factor )2(dX is unhedgeable (neither of the volatilities is traded) 

we cannot express the market price of risk associated with it in terms of other, 

known or modeled, quantities. It must remain an additional, and separately 

modeled, quantity. We shall denote it by . Again, we must modify the volatility 

drifts by subtracting terms of the form 
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from the drift of the first volatility and  
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from the second. 

Therefore we find that the risk-neutral equivalents of the original stochastic 

differential equations are 
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 (4.30) 

These are the random walks that must be simulated for pricing. 

The new parameter  (which may be a function of the other state variables) is the 

market price of risk associated with the unhedgeable factor )2(dX . The term 

containing  is also a market price of risk term, but associated with the stock.   

The term associated with the market price of stock risk is very small compared 

with the other volatility drift terms. This has been ignored in the spreadsheet. 
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The option sensitivities or “Greeks” (delta, vega etc.) have their usual meanings. 

However, it is worth mentioning that all )1(dX risk is totally eliminated by hedging 

with a short stock position of 
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To see this, just calculate the coefficient of )1(dX in the stochastic differential 

equation for V using Ito‟s lemma.  

From Ito‟s lemma we have 
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But for hedging purposes we hold a quantity B of the stock short. This 

contributes a term 

 dtdXPB ... )1()1(    (4.33) 

to the „hedged‟ portfolio. Now remember that B  is chosen to eliminate the 

)1(dX  randomness in the dV expression. 

This B may be termed the „best hedge ratio.‟ It is calculated in the spreadsheet. 

An option hedged in such a way has a return in excess of the risk-free rate of 
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The easiest way to derive this expression is to calculate the coefficient of )2(dX in 

the stochastic differential equation for V using Ito‟s lemma: 
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The coefficient of )2(dX in this represents the risk that cannot be eliminated. 

Now simply add to this a deterministic term (i.e. a dt term) with the same 

coefficient multiplied by the relevant market price of risk. 

This expression shows how there is a „residual risk‟ that is unhedgeable. The 

magnitude of this risk is the coefficient of )2(dX and is calculated in the 

spreadsheet.  

Simulations versus partial differential equations 

The above stochastic differential equations can be used for the calculation of 

prices and Greeks via a direct simulation. The same stochastic differential 

equation foundation can also be used to cast the pricing and hedging problem in 

terms of a partial differential equation. This would allow other numerical 

methods to be used, in particular ones which could be extended to the pricing of 

American options, something which is very difficult to do in a pure simulation 

framework.  

Special case, deterministic volatility 

With  

0D , 0h , 0q  and 0q  

the system of equations reduces to  



 18 

,  )1()1( dWPdtrPdP   (4.36) 
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The volatilities are then both deterministic 
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When volatility is deterministic the Black-Scholes formulae are still valid, 

provided the volatility is replaced by the square root of the average variance.  

That is, replace the (constant) volatility in the Black-Scholes formulae with 


t

d
t 0

2)1( ))((
1

 . (4.39) 

Monte-Carlo Simulation Model 

A Monte-Carlo simulation model based on the above analysis was programmed 

in MS-Excel with spreadsheet inputs and outputs described below.    

Required Inputs  

Asset Today 100 

Volatility_1 Today 20.00% 

Volatility_2 Today 20.00% 
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Asset Today is the underlying stock price at time of pricing. Volatility_1 Today 

and Volatility_2 Today are the values of the two volatility variables, output from 

the REGARCH analysis. These three variables must be updated at each new 

pricing. 

 
Market Price of Volatility_1 Risk 0 

 

Market Price of Volatility_1 Risk is a parameter, and should not need 

changing. 

Market Price of Volatility_2 Risk 0 

 

Market Price of Volatility_2 Risk is a parameter, and should not need 
changing. 
 

Interest rate 0.05 

 
Interest rate represents the interest rate applying over the option‟s life. 
 

Number of timesteps 100 

Number of paths 200 

 

Number of timesteps and Number of paths govern the accuracy of the end 

result. If the number of timesteps is too few for the calculation to converge, an 

error message will be output and the function will be exited. 
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REGARCH Model Parameters 

h 0.5163 

h 0.0566 

h -0.0012 

q 0.0249 

q -4.4382 

q 0.0058 

q -0.013 
The above are the process parameters, output from the REGARCH model 

estimation procedure. They should remain fixed for each stock, but will vary 

from stock to stock. 

Dividends  
(Continuous yield)  

Yield 0.0% 
  

Dividends (Discrete amount)  
Time    Amount 
0.25 1 
0.75 2 

2 0 
The spreadsheet allows a very general dividend structure in which discrete 

dividends of any size can be scheduled for payment at any point during the life of 

the option(s) to be modelled. 

 A B C D E F G 
Type C C C C C C C 

Strike 70 80 90 100 110 120 130 
Expiration 1 1 1 1 1 1 1 

 
Seven option series have been included (A-G), but this can easily be extended. 
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Output 

Theoretical values for the option, the Delta, Gamma and Theta are output for 

each option series. 

Option Value 34.089 25.752 18.511 12.853 8.592 5.509 3.454 

Delta 0.953 0.884 0.766 0.618 0.488 0.352 0.248 

Gamma 0.003 0.005 0.014 0.013 0.010 0.014 0.014 

Theta -4.091 -7.044 -6.780 -7.636 -6.400 -4.977 -5.807 

Vega 1 0.145 0.282 0.489 0.628 0.794 0.681 0.744 

Vega 2 3.683 7.362 11.927 14.290 15.464 14.628 12.237 

 

These option values are then reinterpreted in terms of implied volatilities. 

Implied 

Volatility 27.4% 26.7% 26.2% 26.4% 26.4% 26.3% 26.3% 

 

These implied volatilities are then fed back into the Black-Scholes formulae to 

give reference values for the Greeks. 

Delta 0.947 0.876 0.765 0.626 0.484 0.355 0.250 

Gamma 0.004 0.008 0.012 0.014 0.015 0.014 0.012 

Theta -4.502 -5.826 -6.926 -7.482 -7.258 -6.398 -5.252 

Vega 10.722 20.455 30.703 37.885 39.863 37.235 31.751 

 

The model also calculated the optimal hedge ratio and the residual risk: 
 

Best hedge ratio 0.952 0.882 0.762 0.613 0.482 0.348 0.244 

Residual risk 0.317 0.632 1.031 1.244 1.372 1.282 1.111 

  

The implied volatilities are plotted against strike prices.  
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Figure 1   Implied Volatilities from REGARCH Option Model 

 

Model Accuracy and Performance 

 
Comparison with Black-Scholes 

There are very few exact, known solutions for complex option-pricing models 

against which to test the Monte Carlo code. One of the few exact solutions is the 

basic Black-Scholes formula but applied in the case of deterministic (i.e. not 

stochastic) volatility. For testing purposes we have compared the model output 

with explicit formulae for option values under assumptions of constant volatility 

and deterministic volatility. In all cases, including with dividends proportional to 

stock price, the results converged to the correct result and were accurate to within 

the expected tolerances. 

In comparing the Greek parameters of the REGARCH vs Black-Scholes model, 

the major difference is likely to be seen in the option Vegas. In the REGARCH 

model there are two Vega parameters, the first quantifying sensitivity to changes 

26.0%

26.2%

26.4%

26.6%

26.8%

27.0%

27.2%

27.4%

27.6%

50 60 70 80 90 100 110 120 130 140 150

Implied Volatility
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in the short-term volatility (the ht process) and the second parameter measuring 

sensitivity to changes in long-term volatility (the qt process).  In general, Vega 1 

will be far lower than the standard Black-Scholes Vega because of the rapid speed 

of mean-reversion in the transitory volatility process.  Vega 2, the sensitivity to 

long term volatility, will typically be of the same order of magnitude and the 

standard Black-Scholes Vega, because the speed of mean reversion in the long-

term volatility process is comparatively low.  It follows that Vega 1 will be 

negatively correlated to the mean reversion parameter kappa-h, while Vega 2 will 

be negatively correlated to kappa-q.  For very small values of kappa-q, the 

REGARCH Vega 2 will be very close to the standard Black-Scholes Vega. 

To demonstrate this relationship we examined the Vegas of a range of 1-year call 

options with strikes in the range of 70 to 130 on an asset having the same 

REGARCH parameters as those estimated for the KOSPI index.  We examined 

the behavior of the Vega 1 and Vega 2 Greeks as kappa-h and kappa-q were 

varied in a range from 0 to 0.01.  The results shown in the chart below clearly 

demonstrate the inverse relationship between kappa-q and Vega 2 and show that, 

for value of kappa-q around 0.001, the mean reversion effect is negligibly small - 

at that point Vega 2 becomes almost indistinguishable from the standard Black-

Scholes Vega.  By contrast, options on a stock process having a mean reversion 

parameter for the long-run volatility process as high as 0.01 are relatively 

insensitive to changes in long term volatility.  In this case Vega 2 is as low as 42% 

of the standard Black-Scholes Vega. 
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Figure 2  Option Vegas Computed Using REGARCH Model 

 

Accuracy Tests 

Given a Monte Carlo estimator NP̂ of the average price of an option based on N 

simulations (number of paths), then from the Central Limit Theorem the 

standard deviation of the estimate approaches N/  for large N. 

The variance 2  of the random variate P whose expectation we are trying to 

estimate is unknown.  However we can use the sample standard deviation N̂  as 
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an unbiased and efficient estimator of  .  This leads to the definition of the 

standard error of NP̂ : 

N
SE N

N

̂
  

The % accuracy can then be expressed as NN PSE ˆ/ . 

We conducted accuracy tests for 6-month call options at strikes between 70 and 

130 (100 = ATM) using the REGARCH model parameters estimated for the 

KOSPI index.  Average prices, sample standard deviations and standard errors 

were estimated for simulations of between 500 and 10,000 paths (in increments 

of 500), with between 50-250 time-steps (in increments of 50 time steps).  The 

results are summarized in the table and chart below.  

 

50 100 150 200 250

500 6.75% 6.96% 7.19% 7.20% 7.16%

1000 5.21% 4.91% 5.07% 5.08% 5.04%

1500 4.18% 4.04% 4.16% 4.11% 4.12%

2000 3.62% 3.45% 3.61% 3.57% 3.54%

2500 3.19% 3.10% 3.21% 3.19% 3.15%

3000 2.83% 2.86% 2.95% 2.91% 2.90%

3500 2.64% 2.65% 2.73% 2.67% 2.71%

4000 2.45% 2.52% 2.54% 2.49% 2.49%

4500 2.38% 2.31% 2.37% 2.34% 2.39%

5000 2.21% 2.23% 2.25% 2.22% 2.26%

5500 2.13% 2.13% 2.17% 2.17% 2.14%

6000 2.01% 2.05% 2.08% 2.04%

6500 1.95% 1.95% 1.99% 1.96%

7000 1.94% 1.88% 1.90% 1.86%

7500 1.86% 1.82% 1.87% 1.83%

8000 1.77% 1.80% 1.78% 1.76%

8500 1.67% 1.74% 1.74% 1.71%

9000 1.69% 1.65% 1.66% 1.68%

9500 1.63% 1.61% 1.63% 1.61%

10000 1.56% 1.60% 1.61% 1.61%
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Table 1  % Standard Error for ATM Options  

 

 

Figure 3  % Standard Error of ATM (100 Strike) Call Options 

 

The analysis confirms the theoretical result that the standard error declines with 

the square-root of the number of simulations.  For a sizeable number of 

simulations (4,000 or more) the number of time steps used makes relatively little 

difference to the accuracy level. 

The results indicate that, for ATM options, an acceptable level of accuracy (say, 

around 2.5%) can be achieved with 4,000 simulations. 

However, the same does not hold true for OTM options.  As the table and chart 

below indicate, in addition to the number of simulations, accuracy levels depend 

on the money-ness of the options.  Due to the extreme kurtosis of the sample 

price distribution, the percentage standard errors of OTM option price estimates 
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are uniformly higher than for ATM or ITM options.  To take a specific example, 

the percentage standard error of a call option estimate based on 4,000 simulations 

is, at 6.86%, some 2.7 time greater than that for an ATM option, and around 6.5 

times larger than for an option struck at 30 points ITM.  The implication is that a 

far larger number of simulations will be required to achieve a desired degree of 

accuracy in the estimation of deep OTM options, compared with ATM or ITM 

options. 

 

Table 2 % Standard Errors for Call Option Price Estimates (100 time steps)  

 

 

Strike

Paths 70 80 90 100 110 120 130

500 2.94% 3.85% 5.15% 6.96% 9.55% 13.50% 19.68%

1000 2.08% 2.72% 3.64% 4.91% 6.74% 9.54% 13.95%

1500 1.70% 2.23% 2.99% 4.04% 5.53% 7.78% 11.26%

2000 1.46% 1.92% 2.56% 3.45% 4.74% 6.71% 9.80%

2500 1.31% 1.71% 2.29% 3.10% 4.24% 5.96% 8.67%

3000 1.21% 1.58% 2.11% 2.86% 3.92% 5.50% 7.87%

3500 1.12% 1.46% 1.96% 2.65% 3.64% 5.10% 7.32%

4000 1.06% 1.38% 1.85% 2.52% 3.47% 4.86% 6.86%

4500 0.98% 1.27% 1.70% 2.31% 3.16% 4.44% 6.40%

5000 0.93% 1.22% 1.64% 2.23% 3.08% 4.34% 6.17%

5500 0.89% 1.17% 1.57% 2.13% 2.91% 4.07% 5.83%

6000 0.87% 1.13% 1.51% 2.05% 2.79% 3.87% 5.49%

6500 0.82% 1.08% 1.44% 1.95% 2.67% 3.76% 5.47%

7000 0.78% 1.03% 1.38% 1.88% 2.58% 3.58% 5.08%

7500 0.76% 1.00% 1.35% 1.82% 2.49% 3.48% 4.94%

8000 0.75% 0.98% 1.32% 1.80% 2.46% 3.42% 4.87%

8500 0.72% 0.95% 1.28% 1.74% 2.39% 3.33% 4.68%

9000 0.70% 0.92% 1.22% 1.65% 2.28% 3.19% 4.58%

9500 0.67% 0.88% 1.18% 1.61% 2.22% 3.10% 4.45%

10000 0.67% 0.88% 1.18% 1.60% 2.20% 3.05% 4.26%
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Figure 4  % Standard Errors of 6-M Call Options. 

 

Performance Testing 

Performance tests were carried out to analyze the time taken by the model to 

price a series of seven options (strikes from 70 to 130, 1-year expiration), 

calculate Greek parameters, implied volatilities and, for comparison purposes, the 

corresponding prices and Greeks from the Black-Scholes model.  The results are 

summarized in the table below, which shows the time taken (in seconds) to 

complete the computations using a number of simulations (in the range from 500 

to 10,000) and time-steps (from 100 to 500).  In practice, the number of time 

steps makes relatively little difference to the accuracy levels, so the most relevant 

results are those in the first column.  The results show that the total computation 

time is a simple linear function of the number of paths and time steps of the 

form: 
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T(secs) = 0.0006 x Time-Steps x Paths 

 

Table 3   Computation Times (in seconds) 

 

The Impact of the Market Price of Volatility Risk 

The form of the diffusion equations leads us to expect that, for both short- and 

long-term volatility processes, the market price of volatility risk (MKPRVR) will 

be negatively correlated with the overall level of volatility.  Consequently the 

principal effect of increasing MKPRVR will be to reduce the average level of the 

implied volatilities of the options.  To demonstrate this effect we used the 

REGARCH model to estimate implied volatilities for a series of 6-month put 

options on the South Korean KOSPI index (using the REGARCH model 

Time Steps

Paths 100 200 300 400 500

500 33 62 91 121 150

1000 63 124 182 242 301

1500 95 184 274 362 451

2000 127 246 364 482 653

2500 158 307 456 883 749

3000 216 403 544 721 898

3500 221 428 634 841 1,047

4000 253 489 725 962 1,198

4500 285 551 815 1,083 1,347

5000 337 618 912 1,206 1,511

5500 369 679 1,000 1,327 1,693

6000 387 823 1,160 1,453 1,816

6500 412 803 1,184 1,573 1,953

7000 444 859 1,310 1,689 2,107

7500 487 938 1,368 1,825 2,309

8000 522 995 1,472 1,947 2,425

8500 538 1,040 1,541 2,044 2,546

9000 571 1,101 1,631 2,166 2,695

9500 602 1,165 1,735 2,291 2,855

10000 636 1,234 1,818 2,413 3,078
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parameters estimated from Stage 1 of the project and simulating 4,000 paths with 

50 time-steps).  The volatility smiles were estimated for levels of MKPRVR in the 

range from 0% to 100%, in increments of 10%.   

 

Figure 5  Implied Volatilities of 6-M Put Options on the South Korean KOSPI Index 

 

The effect of the interaction between the two market price of volatility risk 

factors on average implied volatilities is shown in the chart below.  The impact of 

increasing levels of MKPRVR is to lower the average level of implied volatility 

across all strikes.  For a given level of MKPRVR, the effect of an increase in the 

second MKPRVR factor of 10% is to reduce the average level of implied 

volatility (across all strikes) by an average of between -0.1% to -0.4%.   
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Table 4   Average Implied Volatilities of 6-M Put Options on the KOSPI Index by MKPRV 

 

Conclusion 

We have shown how the theoretical framework developed by Alizadeh, Brandt 

and Diebold (2002) can be extended to provide the basis for a new methodology 

for option pricing, one which takes account of important stylized facts about 

volatility that have been confirmed repeatedly by empirical research.  These 

characteristics include the stochastic nature of volatility, asymmetry, interaction 

with the underlying returns process and the decomposition of its behavior into 

two components, a long term stochastic mean process superimposed upon which 

is a mean-reverting transient process.   A discretized version of the model, 

adaptable for use in Monte-Carlo simulation, appears to provide a viable 

approach to generating option prices which incorporate these effects.   

 

70 80 90 100 110 120 130

0.0 26.0% 25.4% 24.5% 24.0% 23.8% 23.7% 23.7%

0.1 25.8% 25.1% 24.3% 24.0% 23.8% 23.7% 23.7%

0.2 25.9% 24.7% 24.2% 23.8% 23.5% 23.4% 23.4%

0.3 24.6% 24.1% 23.8% 23.8% 23.6% 23.8% 24.2%

0.4 25.6% 24.4% 23.9% 23.5% 23.4% 23.6% 23.8%

0.5 23.7% 23.8% 23.5% 23.1% 22.6% 22.4% 22.4%

0.6 23.8% 23.5% 23.3% 23.1% 22.8% 23.0% 23.2%

0.7 24.7% 24.0% 23.2% 23.1% 23.0% 22.9% 23.2%

0.8 24.5% 23.8% 23.1% 22.6% 22.4% 22.2% 22.0%

0.9 23.8% 23.5% 22.5% 22.1% 21.8% 21.8% 22.1%

1.0 23.5% 22.8% 22.4% 22.0% 21.9% 21.4% 21.0%
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Appendix 1 – Theoretical Concepts 

Unbiased volatility forecasts for REGARCH models 

At time t, ARCH models provide 1th  and 1tq . We may want to predict 

)ln( nth  , nth   and 2
nth  for horizons 1n . 

Let us introduce the notation 

tth
D
tht hRX    

ttq
D
tqt hRX    

for the residuals in these equations. Also, let 

 )ln( tt hH  

 )ln( tt qQ . 

Then our model for the two-factor volatility process can be written as follows: 

1111 )(   ttthtt HQHH   

111   ttqtt QQQ  . 

It is convenient to introduce the autoregressive parameters 

h 1  

q 1  
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Forecasts are obtained by writing future log-volatilities as the sum of variables 

known at the present time plus a linear combination of unknown residuals. 

Tedious algebra leads to : 

ntt

nn

t
n

nt QHH ,1

11

1
1 )1( 




 


















 






  

for 2n , with nt,  a zero-mean forecast error defined by : 

12,  tt   

1123, )1(   tttt   
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1
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Forecasts 

Setting the forecast error equal to zero gives the forecast of )ln( nth   as 
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To predict nth   or 2
nth   requires the variance of the forecast error 

ntntnt fh ,, )ln(   . This is given by 

).()(2)()var( 2222
1

1

22
, qqiqhqhiih

n

i
hint bbaa  





 

Simplifying this expression is not easy. It may be needed for several values of n 

and can then be calculated recursively as 

)()(2)()var()var( 222
111

222
11,, qqnqhqhnnhhnntnt bbaa   

for 3n . 

Assuming the forecast errors are normally distributed, the unbiased forecast of 

nth   is 

))var(5.0exp(ˆ
,, ntntnt fh   

and the unbiased forecast of 2
nth   is 

))var(22exp( ,,, ntntnt fg  . 

An unbiased forecast of the average variance 






N

j
jth

N 1

21
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is given by averaging the variance forecasts, to give 




N

j
jtg

N 1
,

1
. 

The logarithm of the variable q follows an AR(1) process that we assume is 

Gaussian.  

Let 

 )ln( tt qQ . 

Then 

ttt QQ  1  

with 

ttq
D
tqt hRX   . 

Also let )var( D
tX  and )var( tt hR . Then 

.)var( 222  qqt   

At time t we know 1tQ  and from properties of an AR(1) we have conditional 

distributions 

)
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and hence the optimal forecast of ntq   is 

).
1

1
5.0))(ln(exp(][ 2

2

)1(2

1
1

1 








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






n

t
n

tnt qqqE  

Mean square errors for forecasts 

The mean square error (MSE) is the expectation of the squared forecast error. 

The standard deviation of the forecast error is the square root of the MSE. 

ntntnt fh ,,)ln(   so the MSE is then )var( ,nt  which is given by a long 

formula in the previous section.  

Let )var( ,, ntntV   to make the notation more compact. 

For nth  , the forecast is )5.0exp(ˆ
,, ntntnt Vfh  . As nth   has a lognormal 

distribution we can derive 






 


 1])ˆ[()( ,,,22 ntntnt VVf

ntntnt eehhEhMSE . 

For 2
nth  , the forecast is ))var(22exp( ,,, ntntnt fg   and 






 


 1)( ,,, 4442 ntntnt VVf

nt eehMSE  

MSE for the average variance 
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The average variance is 



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N
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with )22exp( ,,, jtjtjt Vfg  . Assume 2N . 

The mean square error of A is 
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This can be evaluated once we know ][ 22
ktjt hhE

  for kj   

as  

][2)ln( ,,,,
22

ktjtktjtktjt ffhh  
  

has an assumed Normal distribution, the required expectation is 

)222exp(][ ,,,,
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kjtktjtktjt WffhhE 
  

with 

).var( ,,,, ktjtkjtW    

If j is 1 then ktkt VW ,,1,  . 
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Now assume 2j  and .3, Nk To find the terms W, adapt one of the 

equations in the previous analysis to give 
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These equations allow the terms W to be calculated from: 
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Monte-Carlo Simulation 

The value of an option on a stock S is given by the equation 

)]([ SpayoffEeP rt , providing the expectation is with respect to a risk-neutral 
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random walk.  Hence we can estimate the value of the option using Monte Carlo 

simulation as follows: 

Simulate the risk neutral random walk, evolving the stock process until option 

expiration. 

1. For this realization calculate the option payoff. 

2. Repeat the above procedure for many simulations. 

3. Calculate the average payoff over all realizations. 

4. Take the present value of the average option payoff. 

 

The continuous time risk-neutral stock process is simulated using a discrete 

procedure known as the Euler method with the equation: 

 tStrSS   

where  is drawn from a standardized Normal distribution. 

The expression for the stock price process is then: 

)]2/([ 2

)()(  ttretSttS   

The error in the estimated option price using the Monte Carlo procedure with N 

realizations is: 
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Normally distributed random numbers are generated using the Box-Muller 

method.  The procedure is to take two uniform random variates x1 and x2 and 

combine them to give two Normally distributed variates y1 and y2 as follows: 

)2cos(ln2 211 xxy    and )2sin(ln2 212 xxy  . 

In the REGARCH framework we need to extend the Euler method to three 

dimensions with the formulation: 

)]2/([
2

)()( iii ttr

ii etSttS
 

  

The issue here is that the i   (i = 1, . . , 3) are correlated random variables.  We 

generate these using Cholesky factorization.  The procedure is as follows. 

Suppose we have d uncorrelated Normally distributed variables 1, . . ., d.  We 

can then generate correlated variables with the transformation: Mεφ  . 

The matrix A must satisfy MMT = , where  is the correlation matrix. 

It is easy to show that ΣMM]MεεMφφ TTT  [][ EE T  as required.  The 

decomposition of the correlation matrix into the product of two matrices is not 

unique.  Cholesky factorization is one procedure for doing this which produces a 

matrix M that is lower triangular.  The procedure is illustrated below. 
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