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Lab:  Box-Jenkins Methodology -  
US Wholesale Price Indicator 

 
In this lab we explore the Box-Jenkins methodology by applying it to a time-series 
data set comprising quarterly observations of the US Wholesale Price Index (see chart 
below). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In keeping with the principles of the Box-Jenkins method, the analysis will follow the 
usual sequence, illustrated overleaf. 

Ø The series is clearly non-stationary in the mean and variance so we must first 
transform the series to achieve stationarity.  We do this by taking the natural 
logarithm and differencing (see chart below). 
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1. Compute the ACF and PACF of the differenced time series and use these to 
identify appropriate models of the form ARMA(p,q), p = 1,2; q = 1,2.  Consider 
how any seasonal effect might be modelled explicitly. 

2. Perform an analysis of variance for each model to compute the model and error 
sums of squares and test the significance of each model and its individual 
parameters. 

To test the significance of the model parameters you will need to estimate the 
parameter standard error, given by the equation: 
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Where, 

X is the matrix of independent variables used in the regression model and σ^ is the 
estimate of the residual standard deviation (MSE). 

3. Compute the Akaike Information Criterion (AIC) and and Bayes Information 
Criterion (BIC) for each model and use these to estimate the model parameters 
and determine the model which best fits the data. 

It may help you to perform the analysis in the following way: 

 

 

 

 

For each model, use the Excel SOLVER function to find the coefficient values 
which minimize the AIC (or BIC).  The preferred model will have the overall 
minimum AIC (or BIC). 

4. Check the ACF and PACF of the residuals and perform the Box-Pierce and Ljung-
Box portmanteau tests to test that the residuals are white nose. 

Model a1 a2 ββ1 ββ44 AIC BIC
AR(2)
ARMA(1,1)

….
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Box-Jenkins Methodology 
 

 
Phase I 
Identification 
 
 
 
 
 
 
 
 
 
 
 
 
 
Phase II 
Estimation  
and Testing 
 
 
 
 
 
 
 
 
 
 
 
 
 
Phase III 
Forecasting 

Data Preparation 
Ø Transform data to stabilize 

variance 
Ø Difference data to obtain 

stationary series 

Model Selection 
Ø Use ACF and PACF to identify 

appropriate models 

Estimation 
Ø Derive MLE parameter 

estimates for each model 
Ø Use model selection criteria to 

choose the best model 

Diagnostics 
Ø Check ACF/PACF of residuals 
Ø Do portmanteau and other tests 

of residuals 
Ø Are residuals white noise? 

No 

Forecasting 
Ø Use model to forecast 
Ø Test effectiveness of model 

forecasting ability 
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Solution: 
Box-Jenkins Methodology -  

US Wholesale Price Indicator 
 
1. The ACF and the PACF of the differenced log WPI series are shown below.  The 

positive, geometrically decaying pattern of the ACF, coupled with the significant 
PACF coefficients at lags 1 and 2 suggest either an AR process with p = 1 or p =2  
or possibly an ARMA(1,1) process. 

Note the jump in the ACF at lag 4.  Since we are using quarterly data we might 
want to incorporate a seasonal factor at lag 4. 

 
 
 
 
 

 

 

 

 

 

 

 

 

 
2. The class of models we are considering is of the form  

ARMA[p,(q1, q2)], p = 1, 2; q1 = 1, 2; q2 = 4 : 
 

yt =  a0 + a1yt-1 + a2yt -2 + εt + β1εt-1 + β4εt-4 
 
Where, in the case of an  

AR(1) model: a2 and β1  and β4 are zero 

AR(2) model: β1  and β4 are zero,  

ARMA(2,1) model: β4 is zero, etc. 
 
Our forecast values are computed using the formula: 
 

y't = a0′ + a1′yt-1 + a2′yt-2 + εt + β1′et-1 + β4 ′et -4 
 

ACF and PACF for ∆∆ Ln(WPI)
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Where a0′ and a1′ are estimates of the model parameters a0 and a1, etc., and et is 
the error term (yt - y't). 

Start by entering a dummy value for coefficient a0 in the cell C3 and a1 in the cell 
C4.   Leave the other coefficients blank for now (so we are testing an AR(1) 
model). 

Start by setting y' 4 =a0+a1_*F19+a2_*F18 (in cell I20).  Compute e4 (=F20-I20) 
in cell J20.   

Then compute y'5 using the formula  

=a0+a1_*F20+a2_*F19+b1_*J20+b4_*J17 

in cell I21 and then copied down into the remaining cells in the column. 

Next, copy the formula for the error term in cell J20 down into the remaining cells 
in that column.   

To prepare the ANOVA, we need to compute the model sums of squares  

 

We calculate the mean using the Excel formula =AVERAGE(F24:F146) in cell 
F148 and then calculate the SSM using the formula =SUMPRODUCT(I24:I146-
$F$148,I24:I146-$F$148) in cell D12. 

The error sums of squares SSE = Σet
2 can be computed directly using the Excel 

formula: = SUMSQ(J24:J146) in cell D13. 

Add  SSM to SSE to compute the total sums of squares SST in cell D14.   

Next we compute the model and error mean square terms by dividing SSM and 
SSE by their respective degrees of freedom {m and (n-m-1) respectively}.. Finally 
we can compute the F-statistic by taking the ratio F = SSM/SSR.  This has an F 
distribution with m and n-m-1 degrees of freedom.  We use the Excel function 
FDIST to calculate the probability of observing a value of F this large or larger 
(under the hypothesis that the model parameters are zero).  The  p-value indicates 
that the model is statistically significant at that probability level.  If the p-value is 
small, the indication is that it is likely that the model is useful in explaining some 
of the variation in the series. 

 

The standard error of the parameter estimates can now be computed.  First we 
need to find the matrix XTX, which is located in the range (N148:S153). 

 

 

 

 

Then we calculate the inverse of the of (m+1) x (m+1) sub-matrix of XTX.   

∑ −= 2)ˆ( yySSM t

X
T
X 1 2 3 4 5

1 123.00000 1.30434 1.29721 -0.00781 -0.02357
2 1.30434 0.04004 0.02918 0.01623 0.00413
3 1.29721 0.02918 0.04013 0.00002 0.00468
4 -0.00648 0.01719 0.00001 0.01625 0.00152
5 -0.01599 0.00457 0.00598 0.00018 0.01645
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For example, for the AR(1) model we require the inverse of the 2x2 sub-matrix of 
XTX., comprising the upper left hand quadrant highlighted in yellow. 

We do this using the Excel function MINVERSE in the following formula in cell 
O156: 

O156 =INDEX(MINVERSE($O$149:$P$150),$N156,O$155) 

Similarly: 

P156 =INDEX(MINVERSE($O$149:$P$150),$N156,P$155) 

O157 =INDEX(MINVERSE($O$149:$P$150),$N157,O$155) 

P157 =INDEX(MINVERSE($O$149:$P$150),$N157,P$155) 

This gives us the complete 2 x 2 inverse matrix (XTX)-1. 

To compute the standard error for the parameter a0, we use the first diagonal 
element of the inverse matrix (XTX) -1 11 =  0.01242.  

The standard error of the constant coefficient estimate is therefore: 

(MSE x 0.01242)1/2 = 0.0013 

This is given by the Excel formula in cell D3: 

D3 = IF(ISBLANK(a0),"",(MSE*O156)^0.5)  

To compute the standard error for the parameter a1, we use 2nd diagonal element 
in the inverse matrix (XTX)-1 22.   The Excel formula in cell D4 is 

D4 =IF(ISBLANK(a1_),"",(MSE*P157)^0.5) 

N.B the ISBLANK function ensures that the SE is calculated only if a parameter 
values has been estimated – otherwise the SE is set to null. 

The t-statistic is the ratio of the parameter estimate to the standard error (E4 
=C4/D4).  The one-sided t-test is performed using the Excel function TDIST in 
the formula  

F3 = IF(E3="","",TDIST(E3,$C$13,1)) 

This tells us the probability of deriving an estimate a0′, if the true value of a0 is 
zero.  

A typical completed ANOVA table is shown below (for the AR(1) model):- 

 

 

 

 

 

 

 

 

 

MLE SE t p

a0 0.005 0.0013 3.408 0.04%

a1 0.580 0.0738 7.864 0.00%

a2

ββ1

ββ4

m 1
n 123

ANOVA DF SS MS F p

Model 1 0.0088 0.00883 61.85 0.000
Error 121 0.0173 0.00014
Total 122 0.0261
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3. :We can now compute the Akaike Information Criterion using the Excel formula 
=n*LN(SSE)+2*m in cell K4.  For comparison, we compute the Schwartz 
Bayesian Information criterion (BIC) in cell K5 using the Excel Formula 
=n*LN(SSE)+m*LN(n). 
 

To test the forecasting performance of our model we compute the coefficient of 
determination R2 using the Excel formula =SSM/SST in cell K7.  The adjusted R2 
is calculated in cell K8 using the Excel formula K8 =(1-(1-K7)*C14/C13). 

So far, we have been working with a dummy value of our model coefficients.  
Now that we have computed the formula for the AIC (BIC) we can proceed to find 
the maximum likelihood estimates of the coefficients.  We do this by using Excel 
SOLVER to find the coefficient values which minimize the AIC (or BIC). 

To run SOLVER, go to the Forecasting commandbar and choose Solver.  The 
following dialog box appears: 
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Enter the cell reference of the AIC field (K4), which is the function to be 
minimized.  In the By Changing Cells field, enter the cell reference(s) of the 
model parameters (C3 and C4).  Click the Solve button and SOLVER will find the 
minimum AIC using a gradient decent search method. 

We find the following results for the optimal AR(1) model: 

 

 

 

 

 

 

 

 

 

Both of the model parameters are highly significant and as a whole the model has 
significant explanatory power (R2 = 33.8%).   

Using a similar technique to estimate the parameters for all the relevant models, 
and the corresponding AIC (and BIC), we arrive at the results shown in the table 
below.   
 
 
 
 
 
 
 
 
 
 
 
Comparing the various models, we can see that the AR(2) model dominates the 
AR(1) model in that is has lower AIC and BIC and higher adjusted R2.  The 
ARMA(2,(1,4)) seasonal model appears to contain a spurious auto-regressive term 
at lag 2, which is non-significant at the 57% level. 
The best model overall appears to be the seasonal ARMA(1,(1,4)) model, which 
has the lowest AIC (-511.0) and BIC (-502.6) and highest R2 (42.7%). 
The form of the model is: 
 
 

yt =  0.0025+ 0.7700yt -1 + εt –0.4246εt-1 + 0.3120εt -4 
 
 

MLE SE t p
a0 0.005 0.0013 3.408 0.000
a1 0.580 0.0738 7.864 0.000 AIC -497.25
a2 0.0000 BIC -494.44
ββ1 0.0000 DW 2.27
ββ4 0.0000 R

2
33.8%

m 1 Adj. R2 33.3%
n 123

ANOVA DF SS MS F p
Model 1 0.0088 0.00883 61.85 0.000 Q(20) p
Error 121 0.0173 0.00014 Box-Pierce 23.76 0.206
Total 122 0.0261 Ljung-Box 25.59 0.142

Max Likelihood

Portmanteau Tests

Model a0 a1 a2 ββ1 ββ4 AIC BIC Adj. R2

AR(1) 0.0013 0.0738 -497.3 -494.4 33.3%
0.04% 0.00%

AR(2) 0.0035 0.4423 0.2345 -502.3 -496.6 36.4%
0.52% 0.00% 0.46%

ARMA(1,(1,4)) 0.0025 0.7700 -0.4246 0.3120 -511.0 -502.6 42.7%
5.96% 0.03% 3.48% 0.07%

ARMA(2,(1,4)) 0.0025 0.7969 -0.0238 -0.4411 0.3132 -509.0 -497.8 42.3%
6.25% 0.02% 43.38% 2.98% 0.06%
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A chart of the data series and forecasts produced by the model is shown below. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. The ACF and PACF of the residuals of the AR(1) model are shown in the chart 
below.  While the Portmanteau tests of the 20 residual autocorrelations of the 
AR(1) model indicate that, as a whole they are insignificant, the ACF and PACF 
correlogram indicates significant non-zero autocorrelations at lags 4 and 6, 
probably due to seasonal non-stationarity. 

 

 

 

 

 

 

 

 

 

 

 

By contrast, the ACF and PACF of the ARMA(1, (1,4)) model shown below 
indicate that the residuals are white noise, as the correlation coefficients all lie 
within the 95% confidence limits.  The Portmanteau tests shown below confirm 
that the residual autocorrelations are collectively insignificant and therefore that 
the residuals are white noise. 
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