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Long Memory and
Regime Shifts in
Asset Volatility

hydrologist Harold Hurst (1951). The classical rescaled range statistic is
defined as

R/S(n) = 1
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Where sn the sample standard deviation:
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Long Memory
The conditional distribution of asset volatility has been the sub-
ject of extensive empirical research in the last decade. The over-
whelming preponderance of evidence points to the existence of
pronounced long term dependence in volatility, characterized by
slow decay rates in autocorrelations and significant correlations at
long lags (e.g. Crato and de Lima, 1993, and Ding, Granger and
Engle, 1993). Andersen, et al, 1999, find similar patterns for auto-
correlations in the realized volatility processes for the Dow 30
stocks—autocorrelations remain systematically above the conven-
tional Bartlett 95% confidence band as far out as 120 days.
Comparable results are seen when autocorrelations are examined
for daily log range volatility, as the figure below illustrates. Here
we see significant autocorrelations in some stocks as far back as
two years.

Long Memory Detection and Estimation
Among the first to consider the possibility of persistent statistical
dependence in financial time series was Mandelbrot (1971), who focused
on asset returns. Subsequent empirical studies, for example by Greene
and Fielitz (1977), Fama and French (1988), Porteba and Summers (1988)
and Jegadeesh (1990), appeared to lend support for his findings of anom-
alous behavior in long-horizon stock returns. Tests for long range
dependence were initially developed by Mandelbrot using a refined ver-
sion of a test statistic, the Rescaled Range, initially developed by English
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The limiting distribution of R/S(n)/
√

n is V [(1 + ρ)/(1 − ρ)]1/2 . As Lo
points out, for some common stocks the estimated autoregressive coef-
ficient is as large at 0.5, implying that the mean of R/S(n)/

√
n may be

biased upward by as much as 73%. In empirical tests, Davies and Harte
(1987) show that even though the Hurst coefficient of a stationary
Gaussian AR(1) is precisely 0.5, the 5% Mandelbrot regression test
rejects this null hypothesis 47% of the time for an autoregressive param-
eter of 0.3

To distinguish between long-range and short-term dependence, Lo
proposes a modification of the R/S statistic to ensure that its statistical
behavior is invariant over a general class of short memory processes, but
deviates for long memory processes. His version of the R/S test statistic
differs only in the denominator. Rather than using the sample standard
deviation, Lo’s formula applies the standard deviation of the partial
sum, which includes not only the sums of squares of deviations for Xj,
but also the weighted autocovariances (up to lag q):

σ̂ 2
n (q) = 1

n

n∑
j=1

(X j − X̄n)
2 + 2

q∑
j=1

ω j(q)γ̂j, ω j(q) = 1 − j

q + 1
, q < n

where the γj are the usual autocovariance estimators.
While in principle this adjustment to the R/S statistic ensures its

robustness in the presence of short-term dependency, the problem
remains of selecting an appropriate lag order q. Lo and MacKinlay (1989)
have shown that when q becomes relatively large to the sample size n,
the finite-sample distribution of the estimator can be radically different
from its asymptotic limit. On the other hand, q cannot be taken too
small as the omitted autocovariances beyond lag q may be substantial.
Andrews (1991) provides some guidance on the choice of q, but since criteria
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The first term is the maximum of the partial sums of the first k devia-
tions of Xj from the sample mean. Since the sum of all n deviations of the
Xj ’s from their mean is zero, this term is always nonnegative.
Correspondingly, the second term is always nonpositive and hence the
difference between the two terms, known as the range for obvious rea-
sons, is always nonnegative.

Madelbrot and Wallis (1969) use the R/S statistic to detect long range
dependence in the following way. For a random process there is scaling
relationship between the rescaled range and the number of observations
n of the form:

R/S(n) ∼ nH

where H is known as the Hurst exponent. For a white noise process
H = 0.5, whereas for a persistent, long memory process H > 0. The dif-
ference d = (H − 0.5) represents the degree of fractional integration in
the process.

Mandelbrot and Wallis suggest estimating the Hurst coefficient by
plotting the logarithm of R/S(n) against log(n). For large n, the slope of
such a plot should provide an estimate of H. The researchers demonstrate
the robustness of the test by showing by Monte Carlo simulation that the
R/S statistic can detect long-range dependence in highly non-Gaussian
processes with large skewness and kurtosis. Madelbrot (1972) also argues
that, unlike spectral analysis which detects periodic cycles, R/S analysis is
capable of detecting nonperiodic cycles with periods equal to or greater
than the sample period.

The technique is illustrated below for the volatility process of General
Electric Corporation, a DOW Industrial Index component. The estimated
Hurst exponent given by the slop of the regression, approximately 0.8,
indicates the presence of a substantial degree of long-run persistence in
the volatility process. Analysis of the volatility processes of other DOW
components yield comparable Hurst exponent estimates in the region of
0.76–0.96.

A major shortcoming of the rescaled range is its sensitivity to short
range dependence. Any departure from the predicted behavior of the R/S
statistic under the null hypothesis need not be the result of long-range
dependence, but may merely be a symptom of short-term memory. Lo
(1991) show that this results from the limiting distribution of the
rescaled range:

1√
n

R/S(n) ⇒ V

Where V is the range of a Brownian bridge on the unit interval.
Suppose now that the underlying process {Xj} is short range depend-

ent, in the form of a stationary AR(1), i.e.

rt = ρrt−1 + εt, εt ∼ N(0, σ 2), |ρ| ∈ (0, 1)
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are based on asymptotic behavior and little is known about the optimal
choice of lag in finite samples.

Another method used to measure long-range dependence is the
detrended fluctuation analysis (DFA) approach of Peng et al (1994) and
further developed by Viswanathan et al (1997). Its advantage over the
rescaled range methodology is that it avoids the spurious detection of
apparent long-run correlation due to non-stationarities. In the DFA
approach the integrate time series y(t ′) is obtained:

y(t ′) =
t ′∑

T=1

x(t).

The series y(t ′) is divided into non-overlapping intervals each containing
m data points and a least squares line is fitted to the data. Next, the root
mean square fluctuation of the detrended time series is calculated for all
intervals:

F(m) =
√√√√ 1

T

T∑
t ′=1

[y(t ′) − ym(t′)]2

A log-log plot of F(m) vs the interval size m indicates the existence of a
power-scaling law. If there is no correlation, or only short term correla-
tion, then F(m) ∝ m1/2 , but if there is long-term correlation then F(m)

will scale at rates greater than 1
2 .

A third approach is a semi-parametric procedure to ovbtain an esti-
mate of the fractional differenceing parameter d. This techniques, due to
Geweke and Porter-Hudak (GPH), is based on the slope of the spectral den-
sity around the angular frequency w = 0. The spectral regression is
defined by:

ln{I(ωλ} = a + b ln
{

4 sin2 ωλ

2

}
+ nλ, λ = 1, . . . , υ

Where I(wλ) is the periodogram of the time series at frequencies
wλ = 2πλ/T with l = 1, . . . , (T − 1)/2. T is the number of observations
and υ is the number of Fourier frequencies included in the spectral
regression. The least squares estimate of the slope of the regression line
provides an estimate of d. The error variance is π 2/6 and allows for the
calculation of the t-statistics for the fractional differencing parameter d.
An issue with this procedure is the choice of υ , which is typically set to
T1/2, with Sowell (1992) arguing that u should be based on the shortest
cycle associated with long-run correlation.

The final method we consider is due to Sowell (1992) and is a proce-
dure for estimating stationary ARFIMA models of the form:

�(L)(1 − L)d(yt − µ) = �(L)εt

Where � and � are lag polynomials, d is the fractional differencing
parameter, µ is the mean of the process yt ∼ N(µ, �) and εt is an error

process with zero mean and constant variance σ 2
e . We can use any set of

exogenous regressors to explain the mean: z = y − µ, µ = f (X, β).
The spectral density function is written in terms of the model param-

eter d, from which Sowell derives the autocovariance function at lag k in
the form:

γ (k) = 1

2π

2π∫
0

f (W )eiwk dw

The parameters of the model are then estimated by exact maximum like-
lihood, with log likelihood:

log L(d, φ, θ, β, σ 2
e ) = − T

2
log(2π) − 1

2
log |�| − 1

2
z′�−1z

Structural Breaks 
Granger and Hyung, 1999, take a different approach to the analysis of
long term serial autocorrelation effects. Their starting point is the stan-
dard I(d) representation of an fractionally integrated process yt of the
form:

(1 − L)dyt = εt

where d is the fractional integration parameter and, from its Maclaurin
expension

(1 − L)d =
∞∑

j=0

πjL
j, πj = j − 1 − d

j
πj−1, π0 = 1

The researchers examine the evidence for structural change in the series
of absolute returns for the SP500 Index by applying the sequential break
point estimation methodology of Bai (1997) and Bai and Perron (1998)
and Iterative Cumulative Sums of Squares (ICSS) technique of Aggarwal,
Inclan and Leal, 1999. Bai’s procedure works as follows. When the break
point is found at period k, the whole sample is divided into two subsam-
ples with the first subsample consisting of k observations and the sec-
ond containing the remaining (T − k) observations. A break point is
then estimated for the subsample where a hypothesis test of parameter
consistency is rejected. The corresponding subsample is then divided
into further subsamples at the estimated break point and a parameter
constancy test performed for the hierarchical subsamples. The proce-
dure is repeated until the parameter constancy test is not rejected for all
subsamples. The number of break points is equal to the number of sub-
samples minus 1. Bai shows how the sequential procedure coupled with
hypothesis testing can yield a consistent estimate for the true number of
breaks.

Aggarwal, Inclan and Leal’s (1999) approach uses the Iterative
Cumulative Sums of Squares (ICSS) as follows. We let {εt} denote a
series of independent observations from a normal distribution with
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zero mean and unconditional variance σ 2
t . The variance within

each interval is denoted by τ 2
j , j = 0, 1, . . . , Nt , where Nt is the

total number of variance changes in T observations and
1 < k1 < k2 < · · · < kNT < T are the set of change points.

So σt = τjkj < t < k j+1

To estimate the number of changes in variance and the point in
time of the shift a cumulative sum of squares is used.

Let Ck = ∑k
t=1 ε2

t , k = 1, . . . , T be the cumulative sum of the
squared observations from the start of the series until the kth

point in time. Then define Dk = (Ck/CT) − k/T .
If there are no changes in variance over the sample period, the

Dk oscillate around zero. Critical values based on the distribution
of Dk under the null hypothesis of no change in variance provide
upper and lower bounds to detect a significant change in variance
with a known level of probability. Specifically, if maxk

√
(T/2)|Dk|

exceeds 1:36, the 95th percentile of the asymptotic distribution,
then we take k∗ , the value of k at which the maximum value is
attained as an estimate of the change point.

The figure below illustrates the procedure for a simulated GBM
process with initial volatility of 20%, which changes to 30% after 190
periods, and then reverts to 20% once again in period 350. The test sta-
tistic 

√
(T/2)|Dk| reaches local maxima at t = 189(2.313) and

t = 349(1.155), clearly and accurately identifying the two break points
in the series.

A similar analysis is carried out for the series of weekly returns in the
SP500 index from April 1985 to April 2002. Several structural shifts in
the volatility process are apparent, including the week of 19 Oct 1987, 20

July 1990 (Gulf War), the market tops around Aug 1997, Aug 1998 and Oct
2000.

In their comprehensive analysis of several emerging and developed
markets, Aggarwal et al identify numerous structural shifts relating to
market crashes, currency crises, hyperinflation and government inter-
vention, including, to take one example, as many as seven significant
volatility shifts in Argentina over the period from 1985–1995.

It is common for structural breaks to result in ill-conditioning in the
volatility processes distribution, often in the form of excess kurtosis.
This kind of problem can sometimes be resolved by modeling the differ-
ent regime segments individually. Less commonly, regime shifts can pro-
duce spurious long memory effects. For example, Granger and Hyung
estimate the degree of fractional integration d in daily SP500 returns for
10 subperiods from 1928–1991 using the standard Geweke and Porter-
Hudak approach. All of the subperiods have strong evidence of long
memory in the absolute stock return. They find clear evidence of a posi-
tive relationship between the time-varying property of d and the num-
ber of breaks, and conclude that the SP500 Index absolute returns series
is more likely to show the “long memory” property because of the pres-
ence of a number of structural breaks in the series rather than being an
I(d) process.

Stocks in Asian-Pacific markets typically exhibit volatility regime
shifts at around the time of the regional financial crisis in the latter
half of 1997. The case of the ASX200 Index component stock AMC is
typical (see figure below). Rescaled range analysis of the entire volatili-
ty process history leads to estimates of fractional integration of the
order of 0.2. But there is no evidence of volatility persistence is the
series post-1997. The conclusion is that, in this case, apparent long
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memory effects are probably the result of a fundamental shift in the
volatility process.

Conclusion
Long memory effects that are consistently found to be present in the
volatility processes in financial assets of all classes may be the result of
structural breaks in the processes themselves, rather than signifying
long-term volatility persistence.

Reliable techniques for detecting regime shifts are now available and
these can be used to segment the data in a way that reduces the risk of
model misspecification.

However, it would be mistaken conclude that all long memory effects
must be the result of regime shifts of one kind or another. Many US
stocks, for example, show compelling evidence for volatility persistence
both pre- and post-regime shifts. Finally, long memory effects can also
result from the interaction of a small number of short-term correlated
factors.
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