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FOLLOW-UP NOTE ON MARKET STATE MODELS 

 

In an earlier note I outlined some of the available techniques used for modeling market states.  The 

following is an illustration of how these techniques can be applied in practice.  

The chart below shows the daily compounded returns for a single pair in an ETF statistical arbitrage 

strategy, back-tested over a 1-year period from April 2010 to March 2011.  

The idea is to examine the characteristics of the returns process and assess its predictability.   

 

 

FIG 1.  Compound Daily Returns in Pair6 

 

The initial impression given by the analytics plots of daily returns, shown in Fig 2 below, is that the 

process may be somewhat predictable, given what appears to be a significant 1-order lag in the 

autocorrelation spectrum.  We also see evidence of the customary non-Gaussian “fat-tailed” distribution 

in the error process. 
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   FIG 2.  Analytical Plots of Daily Returns for Pair6 

 

An initial attempt to fit a standard Auto-Regressive Moving Average ARMA(1,0,1) model  yields 

disappointing results, with an unadjusted  model R-squared of only 7% (see model output in Appendix 1) 

However, by fitting a 2-state Markov model we are able to explain as much as 65% in the variation in the 

returns process (see Appendix II). 

The model estimates Markov Transition Probabilities as follows. 

                    P(.|1)       P(.|2) 

P(1|.)             0.93920      0.69781 

P(2|.)            0.060802      0.30219 

 

In other words, the process spends most of the time in State 1, switching to State 2 around once a 

month, as illustrated in Fig 3 below.  
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FIG 3.  Smooth State Transition Probabilities 

 

In the first state, the  pairs model produces an expected daily return of around 65bp, with a standard 

deviation of similar magnitude.  In this state, the process also exhibits very significant auto-regressive 

and moving average features.  

Regime 1:  

Intercept                      0.00648     0.0009       7.2        0 

AR1                            0.92569    0.01897    48.797        0 

MA1                           -0.96264    0.02111   -45.601        0 

Error Variance^(1/2)           0.00666     0.0007    ------   ------ 

In the second state, the pairs model  produces lower average returns, and with much greater variability, 

while the autoregressive and moving average terms are poorly determined. 

Regime 2:  

Intercept                      0.03554    0.04778     0.744    0.459 

AR1                            0.79349    0.06418    12.364        0 

MA1                           -0.76904    0.51601     -1.49    0.139 
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Error Variance^(1/2)           0.01819     0.0031    ------   ------ 

CONCLUSION 

The analysis in Appendix II suggests that the residual process is stable and Gaussian.  In other words, the 

two-state Markov model is able to account for the non-Normality of the returns process and extract the 

salient autoregressive and moving average features in a way that makes economic sense. 

How is this information useful?  Potentially in two ways: 

(i) If the market state can be forecast successfully, we can use that information to increase our 

capital allocation during periods when the process is predicted to be in State 1, and reduce 

the allocation at times when it is in State 2. 

(ii) By examining the timing of the Markov states and considering different features of the 

market during the contrasting periods, we might be able to identify additional explanatory 

factors that would be used to further enhance the trading model. 

 

FIG 4.  In-Sample and Out-Of-Sample Forecasts 
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APPENDIX I   - ARMA(1,0,1) MODEL 

Dependent Variable is Pair6-Daily 

117 observations  (2-118) used for estimation 

with 1 pre-sample observations 

and 61 ex-post forecasts. 

Estimation Method: Conditional ML (Time Domain) 

Gaussian Likelihood 

ARIMA(1,0,1) 

 

Strong convergence 

iteration time:  0.04 

                              Estimate  Std. Err.   t Ratio  p-Value 

Intercept                      0.00609    0.00142      4.29        0 

AR1                             0.2172    0.20388     1.065    0.289 

MA1                            0.06548    0.32787       0.2    0.842 

Error Variance^(1/2)           0.01109     0.0017    ------   ------ 

                       Log Likelihood = 360.665 

                    Schwarz Criterion = 351.141 

               Hannan-Quinn Criterion = 354.422 

                     Akaike Criterion = 356.665 

                       Sum of Squares =  0.0144 

                            R-Squared =  0.0763 

                        R-Bar-Squared =  0.0517 

                          Residual SD =  0.0105 

                    Residual Skewness =   1.995 
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                    Residual Kurtosis = 10.8968 

                     Jarque-Bera Test = 381.611     {0} 

Box-Pierce (residuals):         Q(23) = 10.9463 {0.984} 

Box-Pierce (squared residuals): Q(25) = 13.1709 {0.974} 

          Forecast Test 1:  ChiSq(61) = 36.5236 {0.995} 

          Forecast Test 2:     N(0,1) = -1.2098 {0.226} 

 Listing saved in Series94.xls 

MA form is 1 + a_1 L +...+ a_q L^q. 

Covariance matrix from robust formula. 
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APPENDIX II   -  2-STATE MARKOV ARMA(1,0,1) MODEL 

 

 

117 observations  (2-118) used for estimation 

with 1 pre-sample observations 

and 61 ex-post forecasts. 

Estimation Method: Conditional ML (Time Domain) 

Gaussian Likelihood 

Markov-switching model with 2 regimes 

ARIMA(1,0,1) 

 

Strong convergence 

iteration time:  1.07 

Markov Transition Probabilities 

                    P(.|1)       P(.|2) 

P(1|.)             0.93920      0.69781 

P(2|.)            0.060802      0.30219 

 

                              Estimate  Std. Err.   t Ratio  p-Value 

Logistic, t(1,1)               2.73741     0.8215    ------   ------ 

Logistic, t(1,2)                0.8369     0.5309    ------   ------ 

Non-switching parameters shown as Regime 1. 

 

Regime 1:  

Intercept                      0.00648     0.0009       7.2        0 
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AR1                            0.92569    0.01897    48.797        0 

MA1                           -0.96264    0.02111   -45.601        0 

Error Variance^(1/2)           0.00666     0.0007    ------   ------ 

 

Regime 2:  

Intercept                      0.03554    0.04778     0.744    0.459 

AR1                            0.79349    0.06418    12.364        0 

MA1                           -0.76904    0.51601     -1.49    0.139 

Error Variance^(1/2)           0.01819     0.0031    ------   ------ 

 

                       Log Likelihood = 391.357 

                    Schwarz Criterion = 367.546 

               Hannan-Quinn Criterion = 375.75 

                     Akaike Criterion = 381.357 

                       Sum of Squares =  0.0059 

                            R-Squared =   0.653 

                        R-Bar-Squared =  0.6238 

                          Residual SD =  0.0081 

                    Residual Skewness = -0.2063 

                    Residual Kurtosis =  2.5963 

                     Jarque-Bera Test =  1.6245 {0.444} 

Box-Pierce (residuals):         Q(23) = 21.4747 {0.552} 

Box-Pierce (squared residuals): Q(25) =  21.172 {0.683} 

          Forecast Test 1:  ChiSq(61) = 76.6542 {0.085} 

          Forecast Test 2:     N(0,1) =  0.9587 {0.338} 
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 Listing saved in Series92.xls 

MA form is 1 + a_1 L +...+ a_q L^q. 

Covariance matrix from robust formula. 

 

 

 

 

 

 

 

 

 

 

 

 


